Reg. No. : \square

Question Paper Code : 80606

B.E./B.Tech. DEGREE EXAMINATION, NOVEMBER/DEC̣EMBER 2016.
Second Semester
Civil Engineering
MA 6251 - MATHEMATICS - II
(Common to all branches except Marine Engineering)
(Regulation 2013)
Time : Three hours
Maximum : 100 marks
Answer ALL questions.

$$
\text { PART A - }(10 \times 2=20 \text { marks })
$$

1. Find the unit normal to $x y=z^{2}$ at $(1,1,-1)$.
2. Using Green's theorem, evaluate $\int_{C}(x d y-y d x)$, where C is the circle $x^{2}+y^{2}=1$ in the $x y$-plane.
3. Find the particular integral of $\left(D^{2}+2 D+1\right) y=e^{-x} x^{2}$.
4. Convert the equation $x^{2} \frac{d^{2} y}{d x^{2}}-2 x \frac{d y}{d x}+2 y=\log x$ into a differential equation with constant coefficients.
5. State the sufficient conditions for the existerice of Laplace transform.
6. Find the inverse Laplace transform of $\frac{s}{(s+2)^{2}}$.
7. Find the value of m if $u=2 x^{2}-m y^{2}+3 x$ is harmonic.
8. Find the image of the circle $|z|=3$ under the transformation $w=2 z$.
'9. State Cauchy's integral theorem.
9. Find the residue of $f(z)=\tan z$ at $z=\frac{\pi}{2}$.

$$
\text { PART B }-(5 \times 16=80 \text { marks })
$$

11. (a) (i) Find the angle between the surfaces $x^{2}+y^{2}+z^{2}=9$ and $z=x^{2}+y^{2}-3$ at the point $(2,-1,2)$
(ii) Prove that $\vec{F}=\left(y^{2} \cos x+z^{3}\right) \hat{i}+(2 y \sin x-4) \hat{j}+3 x z^{2} \hat{k} \quad$ is irrotational and find its scalar potential.

$$
\begin{equation*}
\mathrm{Or} \tag{8}
\end{equation*}
$$

(b) (i) Find the directional derivative of $\varphi=4 x z^{2}+x^{2} y z$ at $(1,-2,1)$ in the direction of $2 \hat{i}+3 \hat{j}+4 \hat{k}$.
(ii) Verify Gauss divergence theorem for
$\vec{F}=\left(x^{2}-y z\right) \hat{i}+\left(y^{2}-z x\right) \hat{j}+\left(z^{2}-x y\right) \hat{k}$, where S is the surface of the cube formed by the planes $x=0, x=1, y=0, y=1, z=0$ and $z=1$.
12. (a) (i) Solve : $\left(D^{2}+2 D+2\right) y=e^{-2 x}+\cos 2 x$.
(ii) Using method of variation of parameters, solve $\frac{d^{2} y}{d x^{2}}+y=\sec x$.

Or
(b) (i) Solve : $x^{2} \frac{d^{2} y}{d x^{2}}-x \frac{d y}{d x}+y=\log x$.
(ii) Solve the following equations : $\frac{d x}{d t}+2 x+3 y=0 ; 3 x+\frac{d y}{d t}+2 y=2 e^{2 t}$.
13. (a) (i) Find the Laplace transform of the following functions:
(1) $\frac{e^{-t} \sin t}{t}$
(2) $t^{2} \cos t$.
(ii) Using Laplace transform, solve $\left(D^{2}+3 D+2\right) y=e^{-3 t}$ given $y(0)=1$ and $y^{\prime}(0)=-1$.
Or
(b) (i) Using convolution theorem, find $L^{-1}\left\{\frac{s}{\left(s^{2}+4\right)\left(s^{2}+9\right)}\right\}$.
(ii) Find the Laplace transform of the square wave function defined by $f(t)=\left\{\begin{array}{rl}k, & 0<t<\frac{a}{2}, \\ -k, & \frac{a}{2}<t<a,\end{array} . f(t+a)=f(t)\right.$.
14. (a) (i) If $f(z)=u(x, y)+i v(x, y)$ is an analytic function, show that the curves $u(x, y)=c_{1}$ and $v(x, y)=c_{2}$ cut orthogonally.
(ii) Find the analytic function $f(z)=u+i v$ whose real part is $u=e^{x}(x \cos y-y \sin y)$. Find also the conjugate harmonic of u.

- Or
(b) (i) Show that the transformation $w=\frac{1}{z}$ transforms in general, circles, and straight lines into circles or straight lines.
(ii) Find the bilinear transformation which maps the points $z=0,1,-1$ onto the points $w=-1,0, \infty$. Find also the invariant points of the transformation.

15. (a) (i) Using Cauchy's integral formula, evaluate $\int_{C} \frac{z d z}{(z-1)^{2}(z+2)}$, where C is the circle $|z-1|=1$.
(ii) Using Contour integration evaluate $\int_{0}^{\infty} \frac{\cos m x d x}{x^{2}+a^{2}}$.
(b) (i) Find the Laurent's series expansion of $f(z)=\frac{1}{z^{2}+5 z+6}-$ valid in the region $1<|z+1|<2$.
(ii) Evaluate $\int_{C} \frac{z d z}{\left(z^{2}+1\right)^{2}}$, where C is the circle $|z-i|=1$, using Cauchy's residue theorem.
